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THE EFFECT OF DEPTH OF STEP OF THE YATER PERFORMANCE

OF A FLYING-BOAT HEULL HODEL
N.A.CidA, MODEIL 11wC
By Joes W. Bell

SUMMARY

NeAeCusA, model 11lw(C was tested in the N.A.C.A. tank
with four different depths of step to obtain information
ags to the effect of the depth of step on the water per~
formance. The depths of step were selected to cover the
practicable range of depths and in esach case the included
angle between the forebody and afiterbody keels was kapt
the same, 6=1/2°,

Small depths of step were round te give lower resighe
ancoe at speeds below and at the hump speed of the model
and greater depths of step lower resistance at high speeds.
For low resistance throughout ths gspeed range of the nodel
investigated the most desirable depth of step is from 2.5
to 4.0 percent of the beame The change of the best trim

angle T, . _cansed by .variatiod of the.depth of step was ~
not appreciable, Inecreased &epths of step caunsed in-
creages inm the maximum positive trimming moments at all
trim angles investigated. o

INTRODUCTION

A seaplane hull must serve as both a displacement and
a planing boat. 4s a displacement boat it must have the
centor of buoyancy near the longitudinal position of the
center of gravity of the seaplane; as a planing boat i%
must have the center of pressurs of the planing surface
near the center of gravity. Satisfactory performance can~
not be obtained from a hull composed of one planing sur-
face because the ceater of pressure of the surfads ap-
proaches the stern as the wetted length decreases at high
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speeds and 1light loads. A seaplane hull should therefore
congiet of two or more planing surfaces separated by a
step or steps. ] o e SR

"

. .

The singleustep type of hull wag selected for tho
pregent investigation because it 1s a typs widely used in
American practice. In this type of hull the step is lo-
cated & short distance abaft the coeanter of gravity of the
gseaplane and the afterbody keel rlises several degrees
above the forebody kesl projected.

For the purpOse of discussing the action of the step,
the take~off run of a seaplane can be divided into thros
stages: first, acting as a displacoment boat at low
speeds; socond, acting as two planing surfaces in the ear-
llor stages of planing; and third, acting es a single plan-
ing surface at speeds near get~away. During the displace~
nent stage a deep step increases turbulonce, which adds to
the repistance. In the second, or "two=planing-surface”
stage, the aftervody acts as an additional planing surface
in the disturbed wake of the forebody. The problem of
depth nf step becomes complex at this speed sinco 1t is de-
sirable to have the afterbody planing at a favorable attl-
tudes In the third stage of the take~off run, wuen the
Lift o the afterbody has become negligibdble and the forew
body or main planing surface of the hull 1s carrying -the
load, 1%t is desiradble teo have sithor the afterbody clear
of the water or 2 minimum area of the afterbody surface
toueching the water., This condition can be accomplished by
a deap- step or a large angle of afterbody keel.

The present investigation consglats of tank tests of a
model c¢f a flying-boat hull with the depth of step varied
to cover the practicable range of depths of the step. 4ll
other dimensions of the modsl were kept at constant values
during the geries of tests., A further test program in-

, eluding a number of combinations of depth of gtep and an-
gle of afterbody 1"eeil. will be started in tha near future.

Although the effect of the depth of step is dependant
upon the angle of afterbody keel, the length of the after-
body, and a number of other variables, the present invesge~
tigation should be helpful in showing the effect of depth
of step-on this particular type of ‘hulle

|
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APPARATUS A¥D METEODS

The ¥.4.C.A. tank and agsociated equipment are dis-
cusgsed in détail in reference 1. The apparatus used in
making the present tests was as described except for the
change in the method of suspending the towing gear diag-~
cusged in reference 2.

The present tests were made by the general method
discussed in reference 1. The procedure in this caso is
to tow the model at a series 6f loads, speeds, and trim
angles selected to include the more important combing-
tions of these variables. The resistance, trimming mo~
ment, and draft at the pstep are measursd for each test
point.

DESCRIPTION OF MODELS

Kodel 11-C, which has been described in referencs 3,
was used as the parent model of the series investigated.
iiodel 11~C is a model of a flying-boat hull whose depth of
step and other proportions, in general, conform closely to
current American practice. ' : :

The model was made in two pieces bolted together at
the step, It was altered to form the three additional
models for this series by moving the afterbody vertically
with respect to the forebody. The small discontinuity
formed in the deck when making this change was faired in
with plasticine to reduce any possible windagse effect.
The principal lines of the model and the method of chang-
ing the depth of the step are shown in figure 1,

The degignatlions of the models of the series wero as
follows:

¥Model Depth of step, Depth of step,
inch percent bdam
11-0-11 1/8 0.74
11=C-12 5/16 1,84
11-C 9/16 3.31

L1=G=13 1 5,88
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RESULTS

- - - —- RS -= EEEE—

- Tpgt data.~ The reslgtance, épeed. trim angle, and
trimming moment for sach test point were determined di- -
rectly from the test data by deducting the usual tares. _ o
Curves ©f resistance and trimming moment for each load -
condition plotted against speed at each trim angle in-
vegtigated are shown for the four models tested In fig-
ures 2 to 25, - _ . =

Eondimensiohal regultg.~ The number of variables in-
volved in the test data make the comparison of models or
the application of test data to design difficult, The = = _ _

cussed in reference 4., The procedure consists of deter- . . -
mining the minimum reslstance and best trim angle for each
speed and load by plotting resistance against trim angle s
at each of a serles of representative speeds with load on i
the wabter as the parametsr. Curves of minimum reslstance S
for each spesd are then plotted against loxl. The re- ——
sulis dre ploited as curves of rosistance coefficlent at _
best trim angle against speed coefficient, with load co-

efficient ae the parameter, L _ : e

The nondimeneional coefficients are defineg aquollowg:

- Load coefficient - CA = —%5
: _ _ L - .
_ _ o o .
Resistance coefficlent Cxr =5
‘:: - o - ‘_'. - - _ _v 4
Speed coefficlient Cy _,JE%
Trimming-moment coefficiqnt_ Cy = ;%r

whoro A -1é the Lload on the watef, 15;
'R, resistance, lb.
U, trimming moment, 1b. /e, S
%, sneciflc we*ght of water, lh /cu ft. ) o ﬂ

by Dbeam of the hull, fi.
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¥, spesed, ft./sec.
&y acceleration of gravity, ft./sec.

Hote: W = 63,5 1be/cu.ft. for water in the N.A.C.A, tank
at the time of making the tests,.

The nondimensional resistance data are glven in fig-
ures 26, 27, 28, and 29 for models lle(=1ll, 11~0~12, 110,
and ll-=C-13, respectively,

e e T S

curves are bellieved to be mccurate within the following
limits:

Load on the water « « ¢« « » . o *0.3 1b,
Roglstance « o « ¢ « s o o« o o +0,2 1ldb.
SPGEA &+ o ¢ « « .+ 4 « 2 o o« s o FEO,L £5,/s00.
Trim angle o« o« + o o o o o o« ioflo_“

Trioming moment ¢« o ¢ ¢ « « o & =1 1b| £t
DISCUSSION

The effect of the depth of step on the load-resistance
ratio of the model at four representative speeds is shown
in figure 30. In the family of curves corresponding to
speed coefficient of 2.0 i% may be seen that the shallow
step gives the highest A/R and that each increase of
depth of step causes a reduction in the A/R. The curves
corresponding to hump speed show the same trend but do noid
show as great a change in A/R as the curves for a spsed
coefficient of 2,0 This variance may be explained in
part by the fact that the action of the model at hump
speed is a combination of displacement and planing and
that the step i1s not causing as much turbulence as at the
lower speed.

At a speed coefficient of 4.5, the model is planing
and the effect of the step has changed from increasing the
resistance to decreasing the resistances It will be noted
tlhat the deeper steps give higher values of A/R at this
speeds The complete reversal of the order of the curves
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Z2as8 besn brought about dy the change in the action of the
stoepe At the speed coofficlient of 640, corresponding to a
speed near get~away for possible applications of thie hull,
the curves for various depths of stoep have retained the

»

-

reater éhange in A/R than at the lower gpeed, At this
high spead the advantage of the deeper step lles 1n the
fact: that it keeps more of the afterbody cloar of the wa-
ter. =
Ia figure 31 the load-resistance ratio at representa-
tive specds is plotted against the depth of gtep with the
load or. the water as the parameter., It will bo noted that
a minimum depth of step is desirabdle at and below hump
speed; -whercas the most desirable deptih of step is about 6
nercent of the beam at highoer speeds. A depth of astep of
about ¢ pdTcent of the beam iy gufficlent to keep the af~ ¢
terbody clear of the wabter at high spceds, therefore a
deeper Htep“waﬁld only increase the cloarance of the aftor~
body and cause no change in the high~spoed resistance. .
Wien all ppeeds are considered, the depth of step that
gives the highnést average A/R seems to lie between 2.5
and 4.0 percent of the beam, _ N - e
A Gomparison of the A/R of the four aepths of step
congidoréd for approximate take-off conditione of & poa-
siblo application i1s given graphically in figure 32, The
load on the water for this comparison was approximated by
assuming the wing 1ift to vary as the square of the speed
withoutmaking allowance for changes of the angle of at—
tack., This figure indicates that the model having a depth
of step. of 3.31 percent of tho boam will take off in loss '
time and distance than any of the throe othor models inves-
tigatod, . : - -

ﬂi@ure 33 shows %he effect of the depth of step on
the best trim angle at hump speed and at a speed near the
got-away spoed of possibdle applications. The best trin
angle increases slightly with the depth of step but this
dlffexrence in bhest trim angle is not great at any speod. vy iam

The“$fFect of the depth of step on “the trimning RO
ments of the model 1s shown in figure 34 by curves of max—
inum poaltive trimming-moment coefficient plotted agailnst
load coefficient for each depth of step at four trim an-
gles. [t is noted that moments imcrease in the positive
direction as the depth of step is increased.
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CONCLUSIONS

Quantitative predictions cannot be made from this ine~
vestigation because of the number of variables influencing
the effect of the depth of stepe The following conclu~
sions, however, are thought %o be true for modsls of the
type investigated, .

1+ The depth of step of a seaplane hull does not
have a critical value but can be varied through a limited
rgnge without a great effect on performance. This range
was from 2,5 to 4,0 percent of the beam for the model
tested,

24 A%t speeds below and at the hump speed a small
depth of stop is desirable for low resistance.

3se At high speeds, the water resistance decreases as
the depth of step is increased up to a certain depth De=-
yond which no further reduction is obtained. This depth
is. about 6 percent of the beam for the model investigated
in the present progran.

4+ The depth of step may be fixed ardbitrarily %o Tem
du.cea the resistance of a hull at the speed where the mos¥y
difficulty is encountered. ' '

Be Reduection of deptlr of step can be considered as
e possible method for reducing ailr drag in f1light at the
expense of water performancee.

Langley Memorilal Aesronauticael Laboratory,
National Advisory Committee for Asronautics,
Langley Fleld, Va., June 7, 1235,
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Paramoter = load on water ,|1b.
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Figure 7.-Resistance and trimming moment, T = 11%.Model 11-C-11,
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Paraneter = load on water, 1b.
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Trimming moment, 1lb.=ft, Resistance, 1b.
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Figure 13.-Resistance and trimming moment, T = 11°%.Model 11-C-12.



N.A.C.A. Technical Wote No. 535 . Fig. 14

Paranetor = lozd on water, 1b.
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Peraneter = load on water, 1b.
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